5.4

Quadratic Expressions

Learning Objectives:

- To discuss the sign of a quadratic expression and to study the change in signs
- To find extreme values of quadratic expressions
 AND
- To practice the related problems

A polynomial of the form $ax^2 + bx + c$, where a, b, c are real or complex numbers and $a \neq 0$, is called a *quadratic* expression in x.

Throughout this module we consider quadratic expressions with real coefficients. In this module we discuss the sign of a quadratic expression, its change in signs and maximum and minimum values.

Sign of a quadratic expression:

Theorem 1: Let $a, b, c \in \mathbb{R}$, $a \neq 0$, then

- (i) The roots of $ax^2 + bx + c = 0$ are non-real complex numbers if and only if the quadratic expression $ax^2 + bx + c$ and a have the same sign for all $x \in \mathbf{R}$.
- (ii) If $ax^2 + bx + c = 0$ has equal roots then the quadratic expression $ax^2 + bx + c$ and a have the same sign for all $x \in \mathbb{R}$, $x \neq -\frac{b}{2a}$.

Proof:

We have
$$ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)$$
$$= a\left[\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a^2}\right]$$

Thus,
$$\frac{ax^2 + bx + c}{a} = \left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a^2}$$
 --- (1)

(i) If the roots of $ax^2 + bx + c = 0$ are non-real complex numbers, then $b^2 - 4ac < 0$, i.e., $4ac - b^2 > 0$ and from (1) $\frac{ax^2 + bx + c}{a} > 0$ for all $x \in \mathbf{R}$ $\Rightarrow ax^2 + bx + c$ and a have the same sign for all $x \in \mathbf{R}$. Conversely, suppose that $ax^2 + bx + c$ and a have the same sign for all $x \in \mathbf{R}$.

$$\Rightarrow \frac{ax^2 + bx + c}{a} > 0 \Rightarrow \left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a^2} > 0 , \forall x \in \mathbf{R}$$
Taking $x = -\frac{b}{2a}$, we obtain
$$\frac{4ac - b^2}{4a^2} > 0 \Rightarrow 4ac - b^2 > 0 \Rightarrow b^2 - 4ac < 0$$

Hence the roots of $ax^2 + bx + c = 0$ are non-real complex numbers.

This proves the first part of the theorem.

(ii) If the equation $ax^2 + bx + c = 0$ has equal roots, then $b^2 - 4ac = 0$ and from (1)

$$\frac{ax^2 + bx + c}{a} = \left(x + \frac{b}{2a}\right)^2 > 0 \text{ for all } x \in \mathbf{R}, x \neq -\frac{b}{2a}$$

Thus, $ax^2 + bx + c = 0$ and a have the same sign for all $x \in \mathbf{R}, x \neq -\frac{b}{2a}$.

This proves the second part of the theorem.

Example1:

Determine the sign of the quadratic expression $x^2 - x + 2$ for $x \in \mathbb{R}$.

Solution:

The discriminant $= (-1)^2 - 4 \cdot 1 \cdot 2 = -7 < 0$. Therefore, the roots of the quadratic equation $x^2 - x + 2 = 0$ are non-real complex numbers.

Therefore, x^2-x+2 and the coefficient of x^2 have the same sign for all $x\in \mathbf{R}$. Since the coefficient of x^2 is 1>0, $x^2-x+2>0$, $\forall\,x\in\mathbf{R}$.

Change in signs of a quadratic expression:

Theorem 2: Let α and β be real roots of $ax^2 + bx + c = 0$ and $\alpha < \beta$. Then

- (i) If $x \in (\alpha, \beta)$, then $ax^2 + bx + c$ and a have opposite signs.
- (ii) If $x \in (-\infty, \alpha) \cup (\beta, \infty)$, then $ax^2 + bx + c$ and a have the same sign.

Proof:

Since α , β are the roots of $ax^2 + bx + c = 0$;

$$ax^2 + bx + c = a(x - \alpha)(x - \beta)$$

Therefore,
$$\frac{ax^2+bx+c}{a}=(x-\alpha)(x-\beta)$$

(i) Suppose $x \in (\alpha, \beta)$. Then $x - \alpha > 0, x - \beta < 0$ and $\frac{ax^2 + bx + c}{a} = (x - \alpha)(x - \beta) < 0$

Thus $ax^2 + bx + c$ and a have opposite signs.

(ii) Suppose
$$x \in (-\infty, \alpha) \cup (\beta, \infty)$$
. Then $x \in (-\infty, \alpha)$ or $x \in (\beta, \infty)$.

a) If
$$x \in (-\infty, \alpha)$$
, then $x < \alpha < \beta$ and

$$x-\alpha<0$$
, $x-\beta<0$.

Therefore,
$$\frac{ax^2+bx+c}{a}=(x-\alpha)(x-\beta)>0$$

Thus $ax^2 + bx + c$ and a have the same sign.

b) If
$$x \in (\beta, \infty)$$
, then $\alpha < \beta < x$ and

$$x-\alpha>0, x-\beta>0.$$

Therefore,
$$\frac{ax^2+bx+c}{a}=(x-\alpha)(x-\beta)>0$$

Thus $ax^2 + bx + c$ and a have the same sign.

Combining the above two cases, the second part of the theorem follows.

Hence the theorem.

Example2:

Discuss the sign of the quadratic expression $4x - 5x^2 + 2$ where $x \in \mathbb{R}$.

Solution:

We have, $-5x^2 + 4x + 2$.

It's discriminant is $b^2 - 4ac = 16 - 4 \cdot (-5) \cdot 2 = 56 > 0$.

The roots are real and they are $\alpha=rac{2-\sqrt{14}}{5}$, $\beta=rac{2+\sqrt{14}}{5}$.

Now $-5x^2 + 4x + 2$ and -5, the coefficient of x^2 have opposite signs if $x \in (\alpha, \beta)$ and have the same sign if $x \in (-\infty, \alpha) \cup (\beta, \infty)$.

Thus
$$4x - 5x^2 + 2 > 0$$
 if $x \in (\alpha, \beta)$

and
$$4x - 5x^2 + 2 < 0$$
 if $x \in (-\infty, \alpha) \cup (\beta, \infty)$.

Extreme values of a quadratic expression:

We show that the extreme values of a quadratic expression with real coefficients depend on the sign of its leading coefficient.

Theorem 3:

Let $a, b, c \in \mathbb{R}$, $a \neq 0$ and $f(x) = ax^2 + bx + c$.

- (i) If a>0, then f(x) has absolute minimum at $x=-\frac{b}{2a}$ and the minimum value is $\frac{4ac-b^2}{4a}$;
- (ii) If a<0, then f(x) has absolute maximum at $x=-\frac{b}{2a}$ and the maximum value is $\frac{4ac-b^2}{4a}$.

Proof:

We have
$$f(x) = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$$
 --- (1)

(i) If
$$a>0$$
, then $f(x)\geq \frac{4ac-b^2}{4a}$, $\forall x\in \textbf{\textit{R}}$ and
$$f(x)=\frac{4ac-b^2}{4a} \text{ when } x=-\frac{b}{2a}.$$

This shows that f(x) has absolute minimum at $x=-\frac{b}{2a}$ when a>0 and its minimum value is $\frac{4ac-b^2}{4a}$.

(ii) If
$$a<0$$
, then $f(x)\leq \frac{4ac-b^2}{4a}$, $\forall x\in \textbf{\textit{R}}$ and
$$f(x)=\frac{4ac-b^2}{4a} \text{ when } x=-\frac{b}{2a} \,.$$

This shows that f(x) has absolute maximum at $x=-\frac{b}{2a}$ when a<0 and its maximum value is $\frac{4ac-b^2}{4a}$.

Hence the theorem.

Example3:

Find the maximum and minimum values of the quadratic expressions

(a)
$$12x - x^2 - 32$$

(b)
$$ax^2 + bx + a$$
; $a, b \in \mathbb{R}, a \neq 0$.

Solution:

- (a) Let $f(x)=12x-x^2-32$. The coefficient of x^2 negative. Therefore, f(x) has absolute maximum at $x=-\frac{b}{2a}=-\frac{12}{2(-1)}=6 \text{ and the maximum value is}$ $f(6)=\frac{4ac-b^2}{4a}=\frac{4(-1)(-32)-12^2}{4(-1)}=4 \ .$
- (b) Let $f(x)=ax^2+bx+a$; $a,b\in R, a\neq 0$. If a>0, then f(x) has absolute minimum at $x=-\frac{b}{2a}$ and the minimum value is $\frac{4ac-b^2}{4a}=\frac{4a^2-b^2}{4a}$. If a<0, then f(x) has absolute maximum at $x=-\frac{b}{2a}$ and the maximum value is $\frac{4ac-b^2}{4a}=\frac{4a^2-b^2}{4a}$.

P1:

Determine the sign of the quadratic expression $x^2 - 8x + 16$.

Solution:

We have, $x^2 - 8x + 16$.

The discriminant = $(-8)^2 - 4 \cdot 1 \cdot 16 = 0$.

The roots of the quadratic equation $x^2 - 8x + 16 = 0$ are real and equal.

Therefore, by the second part of the Theorem 1, $x^2-8x+16$ and the coeff.of x^2 have the same sign for all $x\in \mathbf{R}, x\neq -\frac{b}{2a}\neq 4$. Since the coefficient of x^2 is 1>0, $x^2-8x+16>0$, $\forall x\in \mathbf{R}, x\neq 4$.

P2:

For what values of x, the expression $2x^2 + 5x - 3$ is negative.

Solution:

We have, $2x^2 + 5x - 3$.

It's discriminant is $b^2 - 4ac = 25 - 4 \cdot 2 \cdot (-3) = 1 > 0$.

The roots are real and they are $\alpha=-3$, $\beta=\frac{1}{2}$.

Now, by Theorem 2, $2x^2 + 5x - 3$ and the coefficient of x^2 have opposite signs if $x \in (\alpha, \beta) = \left(-3, \frac{1}{2}\right)$ and have the same sign if $x \in (-\infty, \alpha) \cup (\beta, \infty) = (-\infty, -3) \cup \left(\frac{1}{2}, \infty\right)$.

Since the coefficient of x^2 is 2>0, $2x^2+5x-3<0$ if $x\in\left(-3,\frac{1}{2}\right)$ and

$$2x^2 + 5x - 3 > 0$$
 if $x \in (-\infty, -3) \cup \left(\frac{1}{2}, \infty\right)$.

Therefore, the expression $2x^2 + 5x - 3$ is negative for $x \in \left(-3, \frac{1}{2}\right)$.

P3:

Find the maximum or minimum of the expression $x^2 + 5x + 6$.

Solution:

We have, $x^2 + 5x + 6$. Comparing this expression with $ax^2 + bx + c$, we have a = 1, b = 5, c = 6. Since a = 1 > 0, (by the first part of Theorem 3), $x^2 + 5x + 6$ has absolute minimum at

$$x = -\frac{b}{2a} = -\frac{5}{2 \cdot 1} = -\frac{5}{2}$$

and the minimum value is $\frac{4ac-b^2}{4a} = \frac{4(1)(6)-(5)^2}{4(1)} = -1$.

Therefore, the given expression has the minimum value -1 at $x=-\frac{5}{2}$.

P4:

Find the maximum or minimum of the expression $2x - 7 - 5x^2$

Solution:

We have, $-5x^2 + 2x - 7$. Comparing this expression with $ax^2 + bx + c$, we have a = -5, b = 2, c = -7. Since a = -5 < 0, (by the second part of Theorem 3), $-5x^2 + 2x - 7$ has absolute maximum at

$$x = -\frac{b}{2a} = -\frac{2}{2(-5)} = \frac{1}{5}$$

and the maximum value is $\frac{4ac-b^2}{4a} = \frac{4(-5)(-7)-(2)^2}{4(-5)} = -\frac{34}{5}$.

Therefore, the given expression has the maximum value $-\frac{34}{5}$ at

$$\chi=\frac{1}{5}$$
.

IP1:

Determine the sign of the quadratic expression $x^2 + x + 1$.

Solution:

We have, $x^2 + x + 1$.

The discriminant = $(1)^2 - 4 \cdot 1 \cdot 1 = -3 < 0$.

The roots of the quadratic equation $x^2 + x + 1 = 0$ are non-real complex numbers.

Therefore, by the first part of the Theorem 1, $x^2 + x + 1$ and the coeff.of x^2 have the same sign for all $x \in \mathbf{R}$. Since the coefficient of x^2 is 1 > 0, $x^2 + x + 1 > 0$, $\forall x \in \mathbf{R}$.

IP2:

For what values of x, the expression $x^2 - 5x + 6$ is positive.

Solution:

We have, $x^2 - 5x + 6$.

It's discriminant is $b^2 - 4ac = 25 - 4 \cdot 1 \cdot 6 = 1 > 0$.

The roots are real and they are $\alpha=2$, $\beta=3$.

Now, by Theorem 2, $x^2 - 5x + 6$ and the coefficient of x^2 have opposite signs if $x \in (\alpha, \beta) = (2, 3)$ and have the same sign if $x \in (-\infty, \alpha) \cup (\beta, \infty) = (-\infty, 2) \cup (3, \infty)$.

Since the coefficient of x^2 is 1 > 0, $x^2 - 5x + 6 < 0$ if $x \in (2,3)$ and $x^2 - 5x + 6 > 0$ if $x \in (-\infty,2) \cup (3,\infty)$.

Therefore, the expression $x^2 - 5x + 6$ is positive for $x \in (-\infty, 2) \cup (3, \infty)$.

IP3:

Find the maximum or minimum of the expression $x^2 - 8x + 17$

Solution:

We have, $x^2 - 8x + 17$. Comparing this expression with $ax^2 + bx + c$, we have a = 1, b = -8, c = 17. Since a = 1 > 0, (by the first part of Theorem 3), $x^2 - 8x + 17$ has absolute minimum at

$$x = -\frac{b}{2a} = -\frac{(-8)}{2 \cdot 1} = 4$$

and the minimum value is $\frac{4ac-b^2}{4a} = \frac{4(1)(17)-(-8)^2}{4(1)} = 1$.

Therefore, the given expression has the minimum value 1 at x = 4.

IP4:

Find the maximum or minimum of the expression $2x - x^2 + 7$.

Solution:

We have, $-x^2 + 2x + 7$. Comparing this expression with $ax^2 + bx + c$, we have a = -1, b = 2, c = 7. Since a = -1 < 0, (by the second part of Theorem 3), $-x^2 + 2x + 7$ has absolute maximum at

$$x = -\frac{b}{2a} = -\frac{2}{2(-1)} = 1$$

and the maximum value is $\frac{4ac-b^2}{4a} = \frac{4(-1)(7)-(2)^2}{4(-1)} = 7$.

Therefore, the given expression has the maximum value 7 at x = 1.

1. Determine the sign of the following expressions for $x \in \mathbb{R}$.

a.
$$x^2 - 5x + 6$$

b.
$$x^2 - 5x + 4$$

c.
$$x^2 - x + 3$$

2. For what values of x, the following expressions are positive?

a.
$$3x^2 + 4x + 4$$

b.
$$4x - 5x^2 + 2$$

c.
$$4x - 5x^2 + 1$$

d.
$$x^2 - 5x + 14$$

3. For what values of x, the following expressions are negative?

a.
$$x^2 - 7x + 10$$

b.
$$15 + 4x - 3x^2$$

c.
$$x^2 - 5x - 6$$

d.
$$2x - 3 - 6x^2$$

$$e. -7x^2 + 8x - 9$$

4. Find the maximum or minimum of the following expressions as x varies over R.

a.
$$2x - 7 - 5x^2$$

b.
$$3x^2 + 2x + 11$$

c.
$$x^2 - x + 7$$

d.
$$2x + 5 - 3x^2$$